Halar® Properties
Barrier Properties
Excellent- 10 to 100 times better than those of PTFE or FEP to oxygen, carbon dioxide, chlorine gas, or hydrochloric acid.
Electrical Properties
The dielectric constant of Halar® is low and stable across a broad temperature and frequency range. The dielectric strength is 80 kV/mm (2000 V/mil) in .025 mm (1mil) thickness.
Machinability
Similar to Nylon 6
Thermal Properties
Halar® is UL certified for use in non-load bearing applications requiring continuous service at temperatures to 150°C (300°F).
Water Absorption
Less than 0.1%.
Surface Smoothness
Halar® is distinguished from all other fluoropolymers by its exceptional surface smoothness. Halar® exhibits extraordinary smoothness as measured by SEM and AFM analytical methods. A very important benefit of this surface property was demonstrated in biofilm testing. The formation of biorganic films and bacterial colonies was significantly reduced on process surfaces of Halar® versus electropolished stainless steel and PVDF.
Chemical Resistance
Resists a wide variety of corrosive chemicals and organic solvents, including strong acids, chlorine, and aqueous caustics.
Mechanical Properties
Halar® possesses excellent mechanical properties over a wide range of temperatures from cryogenic to 150°C (300°F). It has Nylon-like durability and provides excellent impact resistance at ambient and sub-ambient temperatures. Halar® has good tensile, flexural, and wear-related properties.
Purity
Static soak testing in Ultra-Pure Water and High Purity Chemicals show extremely low levels of metallic and organic extractables. Additional dynamic rinse data also validates Halar® as a material suitable for high purity systems in the semiconductor, biotech, and pharmaceutical industries.
Hydrophobic
Halar® is not wetted by water, but oil and hydrocarbons readily spread on its surface.
- HALAR® ECTFE Fluoropolymer
- Retained Properties of Halar® ECTFE 300
- Chemical Reisitance Data for Halar® ECTFE Fluoropolymer
- Mechanical Properties of Halar® ECTFE Fluoropolymer
Typical Properties* of HALAR® ECTFE Fluoropolymer
Property |
Units
|
Halar® Grade 6014
|
|
||
Mechanical Properties | ||
Tensile Strength @ 23°C (73°F) |
MPa (psi)
|
|
|
32 (4700)
|
|
|
45 (6600)
|
|
Elongation |
%
|
|
|
5
|
|
|
325
|
|
Impact Resistance |
J/m (ft-lbs/in)
|
|
|
No break
|
|
|
48 (0.9)
|
|
|
||
Electrical Properties | ||
Dielectric Strength |
kV/mm
|
|
|
(V/mil)
|
80 (2000)
|
|
14 (350)
|
|
Dielectric Constant |
—
|
|
|
2.50
|
|
|
2.57
|
|
Dissipation Factor |
—
|
|
|
.0017
|
|
|
.017
|
|
|
||
Thermal Properties
|
||
Melting Point, min. |
°C (°F)
|
220 (428)
|
Brittleness Temperature |
°C (°F)
|
<-76 (-105)
|
Maximum Service Temperature |
°C (°F)
|
150 (300)
|
|
||
Other Properties
|
||
Weathering Resistance |
—
|
|
|
No change
|
|
Specific Gravity |
—
|
1.68 ± .05
|
Moisture Absorption |
%
|
<0.1
|
|
||
*Typical properties, not to be used for specification purposes |
Retained Properties of Halar® ECTFE 300
Chemical compatibility data based on actual laboratory tests. All specimens tested for 30 days chemical immersion at specified temperatures. |
|||||||||||||
Chemical Name
|
Test Temp. °C
|
Tensile Strength
|
Elongation
|
Weight Gain, %
|
Color Change
|
||||||||
Acetic Acid |
140
|
I
|
I
|
3.4
|
1
|
||||||||
Ammonium Hydroxide 30% |
140
|
I
|
I
|
1.2
|
2
|
||||||||
Butanol n, |
121
|
I
|
I
|
1.9
|
1
|
||||||||
Chromic Acid, 30% |
100
|
I
|
I
|
0.0
|
2
|
||||||||
Hydrochloric Acid, 37% |
100
|
I
|
I
|
0.7
|
3
|
||||||||
Hydrofluoric Acid, 49% |
100
|
I
|
I
|
0.2
|
2
|
||||||||
Hydrogen Peroxide (60%) |
30
|
I
|
I
|
0.3
|
1
|
||||||||
Methanol |
50
|
I
|
I
|
0.4
|
1
|
||||||||
N-Methylpyrrolidone |
20
|
I
|
I
|
1.5
|
1
|
||||||||
Methylene Chloride |
50
|
I
|
I
|
4.1
|
1
|
||||||||
Nitric Acid, 10% |
121
|
I
|
I
|
0.4
|
1
|
||||||||
Nitric Acid, 90% |
71
|
I
|
I
|
2.3
|
2
|
||||||||
Phosphoric Acid, 85% |
140
|
I
|
I
|
-0.1
|
2
|
||||||||
Potassium Hydroxide, 50% |
121
|
I
|
I
|
-0.1
|
2
|
||||||||
Propanol * |
50
|
I
|
I
|
0.16
|
1
|
||||||||
Sodium Hydroxide, 50% |
132
|
I
|
I
|
-0.2
|
2
|
||||||||
Sodium Hypochlorite, 5% |
121
|
I
|
I
|
0.1
|
1
|
||||||||
Sulfuric Acid, 98% |
121
|
I
|
I
|
0.7
|
3
|
||||||||
Toluene |
20
|
I
|
I
|
0.7
|
1
|
||||||||
|
Chemical Reisitance Data for Halar® ECTFE Fluoropolymer
Functional Aromatics
(extracted from Halar® Chemical Resistance Brochure) | ||||||||||||||||||||||
Chemical Name
|
Test Temp. °C
|
Retained Properties
|
Color Change
|
|||||||||||||||||||
Tensile Strength
|
Elongation
|
Weight Gain, %
|
||||||||||||||||||||
Mineral Acids | ||||||||||||||||||||||
Sulfuric Acid, 98% |
121
|
I
|
I
|
0.7
|
3
|
|||||||||||||||||
Hydrochloric Acid, 37% |
100
|
I
|
I
|
0.7
|
3
|
|||||||||||||||||
Chlorosulfonic Acid |
50
|
I
|
I
|
4.3
|
3
|
|||||||||||||||||
Oxidizing Acids | ||||||||||||||||||||||
Nitric Acid, 50% |
50
|
I
|
I
|
0.1
|
1
|
|||||||||||||||||
Chromic Acid, 30% |
100
|
I
|
I
|
0.0
|
2
|
|||||||||||||||||
Inorganic Salts | ||||||||||||||||||||||
Ferric Chloride 55% |
100
|
I
|
I
|
-0.1
|
1
|
|||||||||||||||||
Inorganic Bases | ||||||||||||||||||||||
Sodium Hydroxide, 50% |
132
|
I
|
I
|
-0.2
|
2
|
|||||||||||||||||
Ammonium Hydroxide 30% |
140
|
I
|
I
|
1.2
|
2
|
|||||||||||||||||
Halogens | ||||||||||||||||||||||
Chlorine Water, sat. |
121
|
I
|
I
|
3.5
|
2
|
|||||||||||||||||
Solvents | ||||||||||||||||||||||
Aliphatics | ||||||||||||||||||||||
|
149
|
A
|
I
|
2.7
|
2
|
|||||||||||||||||
Aromatics | ||||||||||||||||||||||
|
66
|
A
|
I
|
4.2
|
1
|
|||||||||||||||||
|
50
|
A
|
I
|
3.8
|
1
|
|||||||||||||||||
|
100
|
I
|
I
|
2.5
|
3
|
|||||||||||||||||
|
100
|
A
|
I
|
5.4
|
2
|
|||||||||||||||||
|
50
|
I
|
I
|
4.8
|
1
|
|||||||||||||||||
|
100
|
I
|
I
|
2.5
|
2
|
|||||||||||||||||
Chlorinated Solvents | ||||||||||||||||||||||
Trichloroethylene 1,1,1 |
20
|
I
|
I
|
0.3
|
1
|
|||||||||||||||||
Chlorobenzene |
50
|
I
|
I
|
4.8
|
1
|
|||||||||||||||||
Alcohols | ||||||||||||||||||||||
Methanol |
50
|
I
|
I
|
0.4
|
1
|
|||||||||||||||||
Butanol n, |
121
|
I
|
I
|
1.9
|
1
|
|||||||||||||||||
Ethers | ||||||||||||||||||||||
1,4 Dioxane |
50
|
I
|
I
|
4.7
|
1
|
|||||||||||||||||
Tetrahydrofuran |
50
|
A
|
I
|
4.3
|
1
|
|||||||||||||||||
Ketones | ||||||||||||||||||||||
Acetone |
100
|
A
|
I
|
3.5
|
1
|
|||||||||||||||||
Methyl Ethyl Ketone |
100
|
I
|
I
|
6.1
|
1
|
|||||||||||||||||
Methylisobutyl Ketone |
100
|
I
|
I
|
5.7
|
1
|
|||||||||||||||||
Acid | ||||||||||||||||||||||
Acetic Acid |
140
|
I
|
I
|
3.4
|
1
|
|||||||||||||||||
Esters
|
||||||||||||||||||||||
Ethyl Acetate |
50
|
I
|
I
|
3.4
|
1
|
|||||||||||||||||
Butyl Acetate |
50
|
A
|
I
|
3.8
|
1
|
|||||||||||||||||
Dimethyl Phthalate |
100
|
I
|
I
|
2.5
|
2
|
|||||||||||||||||
Amines
|
||||||||||||||||||||||
Ethylene Diamine |
20
|
I
|
I
|
0.3
|
2
|
|||||||||||||||||
Aniline |
100
|
I
|
I
|
2.5
|
3
|
|||||||||||||||||
Classic Polymer Solvents
|
||||||||||||||||||||||
Dimethyl Formamdide N, N |
100
|
I
|
I
|
4.8
|
2
|
|||||||||||||||||
Dimethyl Sulfoxide |
100
|
I
|
I
|
1.9
|
1
|
|||||||||||||||||
|
Mechanical Properties of Halar® ECTFE Fluoropolymer
Property |
Units/Test Method
|
Halar Flouropolymer
Typical Value |
|
||
Modulus Tensile Flexural |
MPa (psi)
|
1655 (2.40 x 105)
|
1690 (2.45 x 105)
|
||
|
||
Flexural Strength |
MPa (psi)
|
47 (6800)
|
|
||
Drop Weight (1) |
ASTM D2444
|
|
2.3 mm (90 mil) sheet |
joules (lt-lb/ln.)
|
|
@ 23°C |
> 190 (>140)
|
|
@ -40°C |
> 88 (> 65)
|
|
|
||
Drop Weight |
ASTM D2444
|
|
3/4 in. Schedule 80 pipe |
joules (lt-lb/ln.)
|
|
@ 23°C |
190 (140) ductile
|
|
@ -40°C |
270 (200) ductile
|
|
|
||
Hardness |
ASTM D 785
|
|
Rockwell |
90
|
|
Shore D |
75
|
|
|
||
Coefficient of Friction vs. Steel |
_______
|
|
Static |
0.19
|
|
Dynamic, 50 cm/sec. |
0.19
|
|
|
||
Abrasion Resistance (2) |
Taber (ASTM D1044)
|
|
500 revs. |
0.002
|
|
1000 revs. |
0.005
|
|
|
||
Armstrong (3) |
ASTM D1242
|
|
volume loss |
cc
|
0.3
|
Chemical Resistance
Halar® fluoropolymer exhibits outstanding chemical resistance and excellent barrier properties. It is virtually unaffected by most corrosive chemicals commonly encountered in industry.
Among those substances that Halar® fluoropolymer is resistant to are strong mineral and oxidizing acids, alkalis, metal etchants, liquid oxygen and essentially all organic solvents except hot amines (e.g. aniline, dimethylamine).
Typical of fluoropolymers, Halar® is attacked by metallic sodium and potassium. Rate of attack is function of exposure time and temperature.
Halar® and other fluoropolymers can become slightly plasticized by contact with certain halogenated solvents, but this effect does not normally impair its usefulness. After contact ceases and the part is allowed to dry, the mechanical properties return to their original value, indicating that no chemical attack has occurred.
Halar® fluoropolymer is compatible with liquid oxygen (LOX) as measured by the National Aeronautics and Space Administration test MSFC-SPEC-106B. It is resistant to nitrogen tetroxide (NTO) and monomethylhydrazine (MMH).
Mechanical Properties
Halar® fluoropolymer is a strong, highly impact-resistant material that retains its useful properties over a broad range of temperatures. Its low-temperature properties, especially those related to impact, are particularly outstanding. Information on the important mechanical properties is provided in the accompanying table. In addition to excellent impact properties, Halar® fluoropolymer is seen to have good tensile, flexural and wear-related properties.
- Tup A per ASTM D2444, 4 in. diameter disc supported on 3 in. I.D. ring.
- CS-17 wheels; 500 gram load; abrasion wheels cleaned after every 25 cycles.
- 30-pound load.
The data you are viewing, chemical resistance charts, and other data are available by downloading our PDF of Product Sheets. Additional information is available by calling Plas-Tech Coatings at 610-431-4700 or toll free at 1-800-662-3466.
Halar® is a registered trademark of Ausimont.
This data reproduced from Ausimont literature 01/99AWD-5 and 0399-7.5.